File size: 2,218 Bytes
66f92c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
264d9c8
 
 
66f92c6
264d9c8
ab5866f
264d9c8
 
 
 
 
 
 
 
 
 
2e4be31
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
---
language: 
  - en
tags:
  - financial NLP
  - named entity recognition
  - sequence labeling
  - structured extraction
  - hierarchical taxonomy
  - XBRL
  - iXBRL
  - SEC filings
  - financial-information-extraction
datasets:
  - AAU-NLP/HiFi-KPI
model_name: "BERT-SL1000"
library_name: "transformers"
pipeline_tag: "token-classification"
base_model: "bert-base-uncased"
task_categories:
  - token-classification
task_ids:
  - named-entity-recognition
  - financial-information-extraction
pretty_name: "BERT-SL1000: Sequence Labeling for Financial KPI Extraction"
size_categories: "1M<n<10M"
languages:
  - en
dataset_name: "HiFi-KPI"
model_description: |
  BERT-SL1000 is a **BERT-based sequence labeling model** fine-tuned on the **HiFi-KPI dataset** for extracting 
  **financial key performance indicators (KPIs)** from **SEC earnings filings (10-K & 10-Q)**. It specializes in identifying 
  entities, such as revenue, earnings, and financial ratios, using **token classification**.
  
  This model is part of the **HiFi-KPI benchmark** and is optimized for **hierarchical label consistency**.
  
dataset_link: "https://huggingface.co/datasets/AAU-NLP/HiFi-KPI"
repo_link: "https://github.com/rasmus393/HiFi-KPI"
---

## **BERT-SL1000**

### **Model Description**  
BERT-SL1000 is a **BERT-based sequence labeling model** fine-tuned on the **[HiFi-KPI dataset](https://huggingface.co/datasets/AAU-NLP/HiFi-KPI)** for extracting **financial key performance indicators (KPIs)** from **SEC earnings filings (10-K & 10-Q)**. It specializes in identifying entities, such as revenue, earnings etc. 

This model is trained on the [HiFi-KPI dataset](https://huggingface.co/datasets/AAU-NLP/HiFi-KPI)

### **Use Cases**
- Extracting **financial KPIs** from SEC **10-K and 10-Q** reports  
- **Financial document parsing** with iXBRL-based entity recognition   

### **Performance**
- Trained on **1,000 most frequent labels** from the **[HiFi-KPI dataset](https://huggingface.co/datasets/AAU-NLP/HiFi-KPI)**  

### **Dataset & Code**
- **Dataset**: [HiFi-KPI on Hugging Face](https://huggingface.co/datasets/AAU-NLP/HiFi-KPI)  
- **Code Example**: [HiFi-KPI GitHub Repository](https://github.com/rasmus393/HiFi-KPI)