--- license: apache-2.0 base_model: microsoft/resnet-50 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: resnet-50-plant-disease results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9285917496443812 --- # resnet-50-plant-disease This model is a fine-tuned version of [microsoft/resnet-50](https://huggingface.co/microsoft/resnet-50) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.3609 - Accuracy: 0.9286 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 100 - eval_batch_size: 100 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 400 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 3.4023 | 1.0 | 158 | 3.2949 | 0.4071 | | 1.9184 | 2.0 | 316 | 1.5580 | 0.7788 | | 0.94 | 3.0 | 474 | 0.7401 | 0.8761 | | 0.6491 | 4.0 | 633 | 0.4772 | 0.9118 | | 0.5516 | 5.0 | 791 | 0.3857 | 0.9242 | | 0.5164 | 5.99 | 948 | 0.3609 | 0.9286 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.0 - Tokenizers 0.15.0