sketch-model-3 / serve_loras_prod.py
MarkZakelj's picture
loras serve
e85fe1a
from compel import Compel, ReturnedEmbeddingsType
import logging
from abc import ABC
import uuid
import diffusers
import torch
from diffusers import StableDiffusionXLPipeline, DiffusionPipeline
import numpy as np
import threading
import base64
from io import BytesIO
from PIL import Image
import numpy as np
from tempfile import TemporaryFile
from google.cloud import storage
import sys
import sentry_sdk
from flask import Flask, request, jsonify, current_app
import os
from sequential_timer import SequentialTimer
from safetensors.torch import load_file
from dotenv import load_dotenv
import copy
import gc
logger = logging.getLogger(__name__)
logger.info("Diffusers version %s", diffusers.__version__)
from axiom_logger import AxiomLogger
axiom_logger = AxiomLogger()
sentry_sdk.init(
dsn="https://f750d1b039d66541f344ee6151d38166@o4505891057696768.ingest.sentry.io/4506071735205888",
)
LORAS_DIR = './safetensors'
load_dotenv()
lora_lock = threading.Lock()
# handler_lock = threading.Lock()
# handler_index = 0
# class LoraCache():
# def __init__(self, loras_dir: str = LORAS_DIR):
# self.loras_dir = loras_dir
# self.cache = {}
# def load_lora(self, lora_name: str):
# if lora_name.endswith('.safetensors'):
# lora_name = lora_name.rstrip('.safetensors')
# if lora_name not in self.cache:
# lora = load_file(os.path.join(self.loras_dir, lora_name+'.safetensors'))
# self.cache[lora_name] = lora
# return copy.deepcopy(self.cache[lora_name])
# lora_cache = LoraCache()
class DiffusersHandler(ABC):
"""
Diffusers handler class for text to image generation.
"""
def __init__(self):
self.initialized = False
self.req_id = None
def initialize(self, properties):
"""In this initialize function, the Stable Diffusion model is loaded and
initialized here.
Args:
ctx (context): It is a JSON Object containing information
pertaining to the model artefacts parameters.
"""
logger.info("Loading diffusion model")
logger.info("I'm totally new and updated")
device_str = "cuda:" + str(properties.get("gpu_id")) if torch.cuda.is_available() and properties.get("gpu_id") is not None else "cpu"
self.device_str = device_str
print("my device is " + device_str)
self.device = torch.device(device_str)
self.pipe = StableDiffusionXLPipeline.from_pretrained(
"./",
torch_dtype=torch.float16,
use_safetensors=True,
)
# self.refiner = DiffusionPipeline.from_pretrained(
# "stabilityai/stable-diffusion-xl-refiner-1.0",
# text_encoder_2=self.pipe.text_encoder_2,
# vae=self.pipe.vae,
# torch_dtype=torch.float16,
# use_safetensors=True,
# variant="fp16",
# )
# self.refiner.enable_model_cpu_offload(properties.get("gpu_id"))
# logger.info("Refiner initialized and o")
self.compel_base = Compel(
tokenizer=[self.pipe.tokenizer, self.pipe.tokenizer_2],
text_encoder=[self.pipe.text_encoder, self.pipe.text_encoder_2],
returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED,
requires_pooled=[False, True])
logger.info("Compel initialized")
# self.compel_refiner = Compel(
# tokenizer=[self.refiner.tokenizer_2],
# text_encoder=[self.refiner.text_encoder_2],
# returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED,
# requires_pooled=[True])
logger.info("moving base model to device: %s", device_str)
self.pipe.to(self.device)
logger.info(self.device)
logger.info("Diffusion model from path %s loaded successfully")
axiom_logger.info("Diffusion model initialized", device=self.device_str)
self.initialized = True
def preprocess(self, raw_requests):
"""Basic text preprocessing, of the user's prompt.
Args:
requests (str): The Input data in the form of text is passed on to the preprocess
function.
Returns:
list : The preprocess function returns a list of prompts.
"""
logger.info("Received requests: '%s'", raw_requests)
self.working = True
model_args = {
"prompt": raw_requests[0]["prompt"],
"negative_prompt": raw_requests[0].get("negative_prompt"),
"width": raw_requests[0].get("width"),
"height": raw_requests[0].get("height"),
"num_inference_steps": raw_requests[0].get("num_inference_steps", 30),
"guidance_scale": raw_requests[0].get("guidance_scale", 8.5)
# "lora_weights": raw_requests[0].get("lora_name", None)
# "cross_attention_kwargs": {"scale": raw_requests[0].get("lora_scale", 0.0)}
}
extra_args = {
"seed": raw_requests[0].get("seed", None),
"style_lora": raw_requests[0].get("style_lora", None),
"style_scale": raw_requests[0].get("style_scale", 1.0),
"char_lora": raw_requests[0].get("char_lora", None),
"char_scale": raw_requests[0].get("char_scale", 1.0),
"scene_prompt": raw_requests[0].get("scene_prompt", None)
}
logger.info("Processed request: '%s'", model_args)
axiom_logger.info("Processed request:" + str(model_args), request_id=self.req_id, device=self.device_str)
return model_args, extra_args
def inference(self, request):
"""Generates the image relevant to the received text.
Args:
inputs (list): List of Text from the pre-process function is passed here
Returns:
list : It returns a list of the generate images for the input text
"""
# Handling inference for sequence_classification.
# compel = Compel(tokenizer=[self.pipe.tokenizer, self.pipe.tokenizer_2] , text_encoder=[self.pipe.text_encoder, self.pipe.text_encoder_2], returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED, requires_pooled=[False, True])
st = SequentialTimer()
model_args, extra_args = request
use_char_lora = extra_args['char_lora'] is not None
use_style_lora = extra_args['style_lora'] is not None
style_lora = extra_args['style_lora']
char_lora = extra_args['char_lora']
cross_attention_kwargs = {"scale": extra_args['char_scale'] if use_char_lora else extra_args['style_scale']}
generator = torch.Generator(device="cuda").manual_seed(extra_args['seed']) if extra_args['seed'] else None
prompt = model_args.pop("prompt")
negative_prompt = model_args.pop('negative_prompt')
scene_prompt = extra_args['scene_prompt']
if scene_prompt:
prompt = f'("{prompt}", "{scene_prompt}").and()'
st.time("Base compel embedding")
conditioning, pooled = self.compel_base(prompt)
negative_conditioning, negative_pooled = self.compel_base(negative_prompt)
[conditioning, negative_conditioning] = self.compel_base.pad_conditioning_tensors_to_same_length([conditioning, negative_conditioning])
if use_style_lora:
style_lora = os.path.join(LORAS_DIR, style_lora + '.safetensors')
st.time("Load style lora")
self.pipe.load_lora_weights(style_lora)
if use_char_lora:
st.time("Fuse style lora into model")
self.pipe.fuse_lora(lora_scale=extra_args['style_scale'], fuse_text_encoder=False)
if use_char_lora:
char_lora = os.path.join(LORAS_DIR, char_lora + '.safetensors')
st.time('load character lora')
self.pipe.load_lora_weights(char_lora)
# lora_weights = model_args.pop("lora_weights")
# if lora_weights is not None:
# lora_path = os.path.join(LORAS_DIR, lora_weights + '.safetensors')
# logger.info('LOADING LORA FROM: ' + lora_path)
# self.pipe.load_lora_weights(lora_path)
# Handling inference for sequence_classification.
st.time("base model inference")
inferences = self.pipe(
prompt_embeds=conditioning,
pooled_prompt_embeds=pooled,
negative_prompt_embeds=negative_conditioning,
negative_pooled_prompt_embeds=negative_pooled,
generator=generator,
cross_attention_kwargs=cross_attention_kwargs,
**model_args
).images
if use_style_lora and use_char_lora:
st.time("unfuse lora weights")
self.pipe.unfuse_lora(unfuse_text_encoder=False)
if use_style_lora or use_char_lora:
st.time("unload lora weights")
self.pipe.unload_lora_weights()
st.time('end')
# logger.info("Generated image: '%s'", inferences)
axiom_logger.info("Generated images", request_id=self.req_id, device=self.device_str, timings=st.to_str())
return inferences
def postprocess(self, inference_outputs):
"""Post Process Function converts the generated image into Torchserve readable format.
Args:
inference_outputs (list): It contains the generated image of the input text.
Returns:
(list): Returns a list of the images.
"""
bucket_name = "outputs-storage-prod"
client = storage.Client()
self.working = False
bucket = client.get_bucket(bucket_name)
outputs = []
for image in inference_outputs:
image_name = str(uuid.uuid4())
blob = bucket.blob(image_name + '.png')
with TemporaryFile() as tmp:
image.save(tmp, format="png")
tmp.seek(0)
blob.upload_from_file(tmp, content_type='image/png')
# generate txt file with the image name and the prompt inside
# blob = bucket.blob(image_name + '.txt')
# blob.upload_from_string(self.prompt)
url_name = 'https://storage.googleapis.com/' + bucket_name + '/' + image_name + '.png'
outputs.append(url_name)
axiom_logger.info("Pushed image to google cloud: "+ url_name, request_id=self.req_id, device=self.device_str)
return outputs
app = Flask(__name__)
# Initialize the handler on startup
gpu_count = torch.cuda.device_count()
if gpu_count == 0:
raise ValueError("No GPUs available!")
worker_id = os.environ.get('WORKER_ID', 'Unknown')
if worker_id == 'Unknown':
raise ValueError("No worker id")
logger.critical("cant get worker ID")
logger.info(f"WORKER ID: {worker_id}")
handler = DiffusersHandler()
handler.initialize({"gpu_id": worker_id})
@app.route('/generate', methods=['POST'])
def generate_image():
req_id = str(uuid.uuid4())
selected_handler = None
try:
# Extract raw requests from HTTP POST body
raw_requests = request.json
axiom_logger.info(message="Received request", request_id=req_id, **raw_requests)
gc.collect()
torch.cuda.empty_cache()
selected_handler = handler
selected_handler.req_id = req_id
processed_request = selected_handler.preprocess([raw_requests])
inferences = selected_handler.inference(processed_request)
outputs = selected_handler.postprocess(inferences)
selected_handler.req_id = None
return jsonify({"image_urls": outputs})
except Exception as e:
logger.error("Error during image generation: %s", str(e))
axiom_logger.critical("Error during image generation: " + str(e), request_id=req_id, device=selected_handler.device_str)
return jsonify({"error": "Failed to generate image", "details": str(e)}), 500
if __name__ == '__main__':
app.run(host='0.0.0.0', port=3000, threaded=False)