from abc import ABC, abstractmethod from typing import List, Optional, Tuple, Union import torch from PIL import Image from transformers import BatchEncoding, BatchFeature from .torch_utils import get_torch_device class BaseVisualRetrieverProcessor(ABC): """ Base class for visual retriever processors. """ @abstractmethod def process_images( self, images: List[Image.Image], ) -> Union[BatchFeature, BatchEncoding]: pass @abstractmethod def process_queries( self, queries: List[str], max_length: int = 50, suffix: Optional[str] = None, ) -> Union[BatchFeature, BatchEncoding]: pass @abstractmethod def score( self, qs: List[torch.Tensor], ps: List[torch.Tensor], device: Optional[Union[str, torch.device]] = None, **kwargs, ) -> torch.Tensor: pass @staticmethod def score_single_vector( qs: List[torch.Tensor], ps: List[torch.Tensor], device: Optional[Union[str, torch.device]] = None, ) -> torch.Tensor: """ Compute the dot product score for the given single-vector query and passage embeddings. """ device = device or get_torch_device("auto") if len(qs) == 0: raise ValueError("No queries provided") if len(ps) == 0: raise ValueError("No passages provided") qs_stacked = torch.stack(qs).to(device) ps_stacked = torch.stack(ps).to(device) scores = torch.einsum("bd,cd->bc", qs_stacked, ps_stacked) assert scores.shape[0] == len(qs), f"Expected {len(qs)} scores, got {scores.shape[0]}" scores = scores.to(torch.float32) return scores @staticmethod def score_multi_vector( qs: List[torch.Tensor], ps: List[torch.Tensor], batch_size: int = 128, device: Optional[Union[str, torch.device]] = None, ) -> torch.Tensor: """ Compute the MaxSim score (ColBERT-like) for the given multi-vector query and passage embeddings. """ device = device or get_torch_device("auto") if len(qs) == 0: raise ValueError("No queries provided") if len(ps) == 0: raise ValueError("No passages provided") scores_list: List[torch.Tensor] = [] for i in range(0, len(qs), batch_size): scores_batch = [] qs_batch = torch.nn.utils.rnn.pad_sequence(qs[i : i + batch_size], batch_first=True, padding_value=0).to( device ) for j in range(0, len(ps), batch_size): ps_batch = torch.nn.utils.rnn.pad_sequence( ps[j : j + batch_size], batch_first=True, padding_value=0 ).to(device) scores_batch.append(torch.einsum("bnd,csd->bcns", qs_batch, ps_batch).max(dim=3)[0].sum(dim=2)) scores_batch = torch.cat(scores_batch, dim=1).cpu() scores_list.append(scores_batch) scores = torch.cat(scores_list, dim=0) assert scores.shape[0] == len(qs), f"Expected {len(qs)} scores, got {scores.shape[0]}" scores = scores.to(torch.float32) return scores @abstractmethod def get_n_patches( self, image_size: Tuple[int, int], patch_size: int = 14, *args, **kwargs, ) -> Tuple[int, int]: """ Get the number of patches (n_patches_x, n_patches_y) that will be used to process an image of size (height, width) with the given patch size. """ pass