import math from typing import ClassVar, List, Optional, Tuple, Union import torch from PIL import Image from transformers import BatchFeature from .processing_utils import BaseVisualRetrieverProcessor import numpy as np import torch import torchvision.transforms as T from decord import VideoReader, cpu from PIL import Image from torchvision.transforms.functional import InterpolationMode from transformers import AutoModel, AutoTokenizer from .conversation import get_conv_template from transformers import BatchFeature, ProcessorMixin def get_torch_device(device: str = "auto") -> str: """ Returns the device (string) to be used by PyTorch. `device` arg defaults to "auto" which will use: - "cuda:0" if available - else "mps" if available - else "cpu". """ if device == "auto": if torch.cuda.is_available(): device = "cuda:0" elif torch.backends.mps.is_available(): # for Apple Silicon device = "mps" else: device = "cpu" return device class ColInternVL2Processor(BaseVisualRetrieverProcessor, ProcessorMixin): """ Processor for ColInternVL2. """ attributes = [ "tokenizer"] image_processor_class = "InternVL2ImageProcessor" tokenizer_class = ("Qwen2Tokenizer", "Qwen2TokenizerFast") def __init__(self, tokenizer, **kwargs): self.template = "Hermes-2" self.num_image_token = 256 # self.max_num = 6 self.max_num = 4 if isinstance(tokenizer, str): self.tokenizer = AutoTokenizer.from_pretrained(tokenizer, trust_remote_code=True, use_fast=False) else: self.tokenizer = tokenizer self.tokenizer.padding_side = 'left' self.IMAGENET_MEAN = (0.485, 0.456, 0.406) self.IMAGENET_STD = (0.229, 0.224, 0.225) self.IMG_CONTEXT_TOKEN='' self.IMG_START_TOKEN='' self.IMG_END_TOKEN='' self.img_context_token_id = self.tokenizer.convert_tokens_to_ids(self.IMG_CONTEXT_TOKEN) self.system_message = 'Bạn là một mô hình trí tuệ nhân tạo đa phương thức Tiếng Việt có tên gọi là Vintern, được phát triển bởi người Việt. Bạn là một trợ lý trí tuệ nhân tạo hữu ích và không gây hại.' super().__init__(tokenizer) def build_transform(self, input_size): MEAN, STD = self.IMAGENET_MEAN, self.IMAGENET_STD transform = T.Compose([ T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img), T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC), T.ToTensor(), T.Normalize(mean=MEAN, std=STD) ]) return transform def find_closest_aspect_ratio(self, aspect_ratio, target_ratios, width, height, image_size): best_ratio_diff = float('inf') best_ratio = (1, 1) area = width * height for ratio in target_ratios: target_aspect_ratio = ratio[0] / ratio[1] ratio_diff = abs(aspect_ratio - target_aspect_ratio) if ratio_diff < best_ratio_diff: best_ratio_diff = ratio_diff best_ratio = ratio elif ratio_diff == best_ratio_diff: if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]: best_ratio = ratio return best_ratio def dynamic_preprocess(self, image, min_num=1, max_num=12, image_size=448, use_thumbnail=False): orig_width, orig_height = image.size aspect_ratio = orig_width / orig_height # calculate the existing image aspect ratio target_ratios = set( (i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if i * j <= max_num and i * j >= min_num) target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1]) # find the closest aspect ratio to the target target_aspect_ratio = self.find_closest_aspect_ratio( aspect_ratio, target_ratios, orig_width, orig_height, image_size) # calculate the target width and height target_width = image_size * target_aspect_ratio[0] target_height = image_size * target_aspect_ratio[1] blocks = target_aspect_ratio[0] * target_aspect_ratio[1] # resize the image resized_img = image.resize((target_width, target_height)) processed_images = [] for i in range(blocks): box = ( (i % (target_width // image_size)) * image_size, (i // (target_width // image_size)) * image_size, ((i % (target_width // image_size)) + 1) * image_size, ((i // (target_width // image_size)) + 1) * image_size ) # split the image split_img = resized_img.crop(box) processed_images.append(split_img) assert len(processed_images) == blocks if use_thumbnail and len(processed_images) != 1: thumbnail_img = image.resize((image_size, image_size)) processed_images.append(thumbnail_img) return processed_images def load_image(self, image, input_size=448, max_num=12): transform = self.build_transform(input_size=input_size) images = self.dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num) pixel_values = [transform(image) for image in images] pixel_values = torch.stack(pixel_values) return pixel_values def process_images( self, images: List[Image.Image], ) -> BatchFeature: """ Process images for InternVl2. """ pixel_values = [ self.load_image(image, max_num=self.max_num) for image in images] num_patches_list = [ pixel_.size(0) for pixel_ in pixel_values] image_flags = [ torch.tensor([1] * pixel_.shape[0], dtype=torch.long) for pixel_ in pixel_values ] queries = [] for idx, num_patches in enumerate(num_patches_list): question = "\nDescribe the image." template = get_conv_template(self.template) template.system_message = self.system_message template.append_message(template.roles[0], question) template.append_message(template.roles[1], None) query = template.get_prompt() image_tokens = self.IMG_START_TOKEN + self.IMG_CONTEXT_TOKEN * self.num_image_token * num_patches + self.IMG_END_TOKEN query = query.replace('', image_tokens, 1) queries.append(query) model_inputs = self.tokenizer(queries, return_tensors='pt', padding=True) input_ids = model_inputs['input_ids'] #.to(self.device) attention_mask = model_inputs['attention_mask'] #.to(self.device) pixel_values = torch.cat(pixel_values) batch_doc = BatchFeature({ "pixel_values" : pixel_values, "input_ids" : input_ids, "attention_mask" : attention_mask, # "image_flags" : image_flags }) return batch_doc def process_queries( self, queries: List[str], max_length: int = 100, suffix: Optional[str] = None, ) -> BatchFeature: """ Process queries for InternVl2. """ texts_query: List[str] = [] for query in queries: query = f"Query: {query}" template = get_conv_template(self.template) template.system_message = self.system_message template.append_message(template.roles[0], query) template.append_message(template.roles[1], None) query = template.get_prompt() texts_query.append(query) model_inputs = self.tokenizer(texts_query, return_tensors='pt', max_length=max_length, padding="longest") input_ids = model_inputs['input_ids'] #.to(self.device) attention_mask = model_inputs['attention_mask'] #.to(self.device) batch_query = BatchFeature({ "pixel_values" : None, "input_ids" : input_ids, "attention_mask" : attention_mask, }) return batch_query def score( self, qs: List[torch.Tensor], ps: List[torch.Tensor], device: Optional[Union[str, torch.device]] = None, **kwargs, ) -> torch.Tensor: """ Compute the MaxSim score (ColBERT-like) for the given multi-vector query and passage embeddings. """ return self.score_multi_vector(qs, ps, device=device, **kwargs) def get_n_patches( self, image_size: Tuple[int, int], patch_size: int, ) -> Tuple[int, int]: raise NotImplementedError("This method is not implemented for ColInternVL2.") def score_multi_vector( self, qs: List[torch.Tensor], ps: List[torch.Tensor], batch_size: int = 128, device: Optional[Union[str, torch.device]] = None, ) -> torch.Tensor: """ Compute the MaxSim score (ColBERT-like) for the given multi-vector query and passage embeddings. """ device = device or get_torch_device("auto") if len(qs) == 0: raise ValueError("No queries provided") if len(ps) == 0: raise ValueError("No passages provided") scores_list: List[torch.Tensor] = [] for i in range(0, len(qs), batch_size): scores_batch = [] qs_batch = torch.nn.utils.rnn.pad_sequence(qs[i : i + batch_size], batch_first=True, padding_value=0).float().to( device ) for j in range(0, len(ps), batch_size): ps_batch = torch.nn.utils.rnn.pad_sequence( ps[j : j + batch_size], batch_first=True, padding_value=0 ).float().to(device) scores_batch.append(torch.einsum("bnd,csd->bcns", qs_batch, ps_batch).max(dim=3)[0].sum(dim=2)) scores_batch = torch.cat(scores_batch, dim=1).cpu() scores_list.append(scores_batch) scores = torch.cat(scores_list, dim=0) assert scores.shape[0] == len(qs), f"Expected {len(qs)} scores, got {scores.shape[0]}" scores = scores.to(torch.float32) return scores