File size: 6,977 Bytes
61522a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
# https://github.com/XPixelGroup/ClassSR
import math
import torch
import torch.nn as nn
import torch.nn.init as init
import torch.nn.functional as F


def initialize_weights(net_l, scale=1):
    if not isinstance(net_l, list):
        net_l = [net_l]
    for net in net_l:
        for m in net.modules():
            if isinstance(m, nn.Conv2d):
                init.kaiming_normal_(m.weight, a=0, mode='fan_in')
                m.weight.data *= scale  # for residual block
                if m.bias is not None:
                    m.bias.data.zero_()
            elif isinstance(m, nn.Linear):
                init.kaiming_normal_(m.weight, a=0, mode='fan_in')
                m.weight.data *= scale
                if m.bias is not None:
                    m.bias.data.zero_()
            elif isinstance(m, nn.BatchNorm2d):
                init.constant_(m.weight, 1)
                init.constant_(m.bias.data, 0.0)


def make_layer(block, n_layers):
    layers = []
    for _ in range(n_layers):
        layers.append(block())
    return nn.Sequential(*layers)


class ResidualBlock_noBN(nn.Module):
    '''Residual block w/o BN
    ---Conv-ReLU-Conv-+-
     |________________|
    '''

    def __init__(self, nf=64):
        super(ResidualBlock_noBN, self).__init__()
        self.conv1 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)
        self.conv2 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)

        # initialization
        initialize_weights([self.conv1, self.conv2], 0.1)

    def forward(self, x):
        identity = x
        out = F.relu(self.conv1(x), inplace=True)
        out = self.conv2(out)
        return identity + out


def default_conv(in_channels, out_channels, kernel_size, bias=True):
    return nn.Conv2d(
        in_channels, out_channels, kernel_size,
        padding=(kernel_size//2), bias=bias)

class MeanShift(nn.Conv2d):
    def __init__(self, rgb_range, rgb_mean, rgb_std, sign=-1):
        super(MeanShift, self).__init__(3, 3, kernel_size=1)
        std = torch.Tensor(rgb_std)
        self.weight.data = torch.eye(3).view(3, 3, 1, 1)
        self.weight.data.div_(std.view(3, 1, 1, 1))
        self.bias.data = sign * rgb_range * torch.Tensor(rgb_mean)
        self.bias.data.div_(std)
        self.requires_grad = False

class BasicBlock(nn.Sequential):
    def __init__(
        self, in_channels, out_channels, kernel_size, stride=1, bias=False,
        bn=True, act=nn.ReLU(True)):

        m = [nn.Conv2d(
            in_channels, out_channels, kernel_size,
            padding=(kernel_size//2), stride=stride, bias=bias)
        ]
        if bn: m.append(nn.BatchNorm2d(out_channels))
        if act is not None: m.append(act)
        super(BasicBlock, self).__init__(*m)

class ResBlock(nn.Module):
    def __init__(
        self, conv, n_feat, kernel_size,
        bias=True, bn=False, act=nn.ReLU(True), res_scale=1):

        super(ResBlock, self).__init__()
        m = []
        for i in range(2):
            m.append(conv(n_feat, n_feat, kernel_size, bias=bias))
            if bn: m.append(nn.BatchNorm2d(n_feat))
            if i == 0: m.append(act)

        self.body = nn.Sequential(*m)
        self.res_scale = res_scale

    def forward(self, x):
        res = self.body(x).mul(self.res_scale)
        res += x

        return res

class Upsampler(nn.Sequential):
    def __init__(self, conv, scale, n_feat, bn=False, act=False, bias=True):

        m = []
        if (scale & (scale - 1)) == 0:    # Is scale = 2^n?
            for _ in range(int(math.log(scale, 2))):
                m.append(conv(n_feat, 4 * n_feat, 3, bias))
                m.append(nn.PixelShuffle(2))
                if bn: m.append(nn.BatchNorm2d(n_feat))
                if act: m.append(act())
        elif scale == 3:
            m.append(conv(n_feat, 9 * n_feat, 3, bias))
            m.append(nn.PixelShuffle(3))
            if bn: m.append(nn.BatchNorm2d(n_feat))
            if act: m.append(act())
        else:
            raise NotImplementedError

        super(Upsampler, self).__init__(*m)


class EResidualBlock(nn.Module):
    def __init__(self,
                 in_channels, out_channels,
                 group=1):
        super(EResidualBlock, self).__init__()

        self.body = nn.Sequential(
            nn.Conv2d(in_channels, out_channels, 3, 1, 1, groups=group),
            nn.ReLU(inplace=True),
            nn.Conv2d(out_channels, out_channels, 3, 1, 1, groups=group),
            nn.ReLU(inplace=True),
            nn.Conv2d(out_channels, out_channels, 1, 1, 0),
        )

    def forward(self, x):
        out = self.body(x)
        out = F.relu(out + x)
        return out


class Upsampler(nn.Sequential):
    def __init__(self, conv, scale, n_feat, bn=False, act=False, bias=True):

        m = []
        if (scale & (scale - 1)) == 0:  # Is scale = 2^n?
            for _ in range(int(math.log(scale, 2))):
                m.append(conv(n_feat, 4 * n_feat, 3, bias))
                m.append(nn.PixelShuffle(2))
                if bn: m.append(nn.BatchNorm2d(n_feat))
                if act: m.append(act())
        elif scale == 3:
            m.append(conv(n_feat, 9 * n_feat, 3, bias))
            m.append(nn.PixelShuffle(3))
            if bn: m.append(nn.BatchNorm2d(n_feat))
            if act: m.append(act())
        else:
            raise NotImplementedError

        super(Upsampler, self).__init__(*m)


class UpsampleBlock(nn.Module):
    def __init__(self,
                 n_channels, scale, multi_scale,
                 group=1):
        super(UpsampleBlock, self).__init__()

        if multi_scale:
            self.up2 = _UpsampleBlock(n_channels, scale=2, group=group)
            self.up3 = _UpsampleBlock(n_channels, scale=3, group=group)
            self.up4 = _UpsampleBlock(n_channels, scale=4, group=group)
        else:
            self.up = _UpsampleBlock(n_channels, scale=scale, group=group)

        self.multi_scale = multi_scale

    def forward(self, x, scale):
        if self.multi_scale:
            if scale == 2:
                return self.up2(x)
            elif scale == 3:
                return self.up3(x)
            elif scale == 4:
                return self.up4(x)
        else:
            return self.up(x)


class _UpsampleBlock(nn.Module):
    def __init__(self,
                 n_channels, scale,
                 group=1):
        super(_UpsampleBlock, self).__init__()

        modules = []
        if scale == 2 or scale == 4 or scale == 8:
            for _ in range(int(math.log(scale, 2))):
                modules += [nn.Conv2d(n_channels, 4 * n_channels, 3, 1, 1, groups=group), nn.ReLU(inplace=True)]
                modules += [nn.PixelShuffle(2)]
        elif scale == 3:
            modules += [nn.Conv2d(n_channels, 9 * n_channels, 3, 1, 1, groups=group), nn.ReLU(inplace=True)]
            modules += [nn.PixelShuffle(3)]

        self.body = nn.Sequential(*modules)

    def forward(self, x):
        out = self.body(x)
        return out