import dotenv import hydra from omegaconf import DictConfig # load environment variables from `.env` file if it exists # recursively searches for `.env` in all folders starting from work dir dotenv.load_dotenv(override=True) @hydra.main(config_path="configs/", config_name="train.yaml") def main(config: DictConfig): # Imports can be nested inside @hydra.main to optimize tab completion # https://github.com/facebookresearch/hydra/issues/934 from src import utils from src.training_pipeline import train # Applies optional utilities utils.extras(config) # Train model return train(config) if __name__ == "__main__": main()