--- name: "K-POP" license: "mit" metrics: - MAE - PLCC - SRCC - R2 tags: - focus-prediction - microscopy - pytorch --- # K-POP: Predicting Distance to Focal Plane for Kato-Katz Prepared Microscopy Slides Using Deep Learning PyTorch Lightning Config: Hydra ## Description TODO ## How to run TODO Install dependencies ```bash # clone project git clone https://github.com/YourGithubName/your-repo-name cd your-repo-name # [OPTIONAL] create conda environment conda create -n myenv python=3.8 conda activate myenv # install pytorch according to instructions # https://pytorch.org/get-started/ # install requirements pip install -r requirements.txt ``` Train model with default configuration ```bash # train on CPU python train.py trainer.gpus=0 # train on GPU python train.py trainer.gpus=1 ``` Train model with chosen experiment configuration from [configs/experiment/](configs/experiment/) ```bash python train.py experiment=experiment_name.yaml ``` You can override any parameter from command line like this ```bash python train.py trainer.max_epochs=20 datamodule.batch_size=64 ```