# @package _global_ # example hyperparameter optimization of some experiment with Optuna: # python train.py -m hparams_search=mnist_optuna experiment=example defaults: - override /datamodule: focus150.yaml - override /model: focus150.yaml - override /hydra/sweeper: optuna # choose metric which will be optimized by Optuna # make sure this is the correct name of some metric logged in lightning module! optimized_metric: "val/mae_best" name: "focusMSE_150_hyperparameter_search" # here we define Optuna hyperparameter search # it optimizes for value returned from function with @hydra.main decorator # docs: https://hydra.cc/docs/next/plugins/optuna_sweeper hydra: sweeper: _target_: hydra_plugins.hydra_optuna_sweeper.optuna_sweeper.OptunaSweeper # storage URL to persist optimization results # for example, you can use SQLite if you set 'sqlite:///example.db' storage: null # name of the study to persist optimization results study_name: focusMAE_150_hyperparameter_search # number of parallel workers n_jobs: 1 # 'minimize' or 'maximize' the objective direction: minimize # total number of runs that will be executed n_trials: 20 # choose Optuna hyperparameter sampler # docs: https://optuna.readthedocs.io/en/stable/reference/samplers.html sampler: _target_: optuna.samplers.TPESampler seed: 12345 n_startup_trials: 10 # number of random sampling runs before optimization starts # define range of hyperparameters search_space: datamodule.batch_size: type: categorical choices: [64, 128] model.lr: type: float low: 0.0001 high: 0.2 model.lin1_size: type: categorical choices: [64, 128, 256, 512, 1024] model.lin2_size: type: categorical choices: [64, 128, 256, 512, 1024] model.lin3_size: type: categorical choices: [64, 128, 256, 512, 1024]