import pandas as pd from collections import defaultdict from dotenv import load_dotenv import os from PIL import Image, ImageDraw import math import json import random class StackEntry: def __init__(self): self.images = [] self.objects = [] def add_image(self, image): self.images.append(image) def add_object(self, object): self.objects.append(object) def sort(self): self.images.sort(key=lambda x: x.focus_value) def get_neighbours(img, x, y, dimensions): neighbour_candidates = [(-1,-1), (0, -1), (1, -1), (-1, 0), (1,0), (-1,1), (0,1), (1,1)] width, height = img.size neighbours = [] for x_offset, y_offset in neighbour_candidates: neighbour_x = x + x_offset * dimensions neighbour_y = y + y_offset * dimensions if neighbour_x >= 0 and neighbour_x + dimensions <= width and neighbour_y >= 0 and neighbour_y + dimensions <= height: box = [neighbour_x, neighbour_y, neighbour_x + dimensions, neighbour_y + dimensions] neighbours.append((neighbour_x, neighbour_y, img.crop(box))) else: neighbours.append(None) return neighbours def extract_object_tiles(obj, stack_images, in_folder): x_start = int(obj.x_min / size) * size x_end = int(math.ceil(obj.x_max / size)) * size y_start = int(obj.y_min / size) * size y_end = int(math.ceil(obj.y_max / size)) * size tiles = [] focus_stack_images = list(map(lambda x: (x, Image.open(os.path.join(in_folder, x.file_path))), stack_images)) # Get tiles of the image that contain bounding box of object for y in range(y_start, y_end, size): for x in range(x_start, x_end, size): stack = [] for row, img in focus_stack_images: box = [x, y, x + size, y + size] crop = img.crop(box) neighbours = get_neighbours(img, x, y, size) stack.append((row, box[:2], crop, neighbours)) tiles.append(stack) return tiles def save_tile(original_file_path, out_dir, x : int, y : int, img, overwrite = False): path, file_name = os.path.split(original_file_path) name, ext = os.path.splitext(file_name) out_path = os.path.join(out_dir, path) save_to = os.path.join(out_path, f'{name}_{x}_{y}{ext}') if not os.path.exists(out_path): os.makedirs(out_path) if overwrite or not os.path.exists(save_to): img.save(save_to) return save_to def save_obj_tiles(obj, out_folder, in_folder, stack_images): extracted = extract_object_tiles(obj, stack_images, in_folder) z_stacks = [] for z_stack in extracted: z_stack_images = [] for row, box, img, neigbours in z_stack: neighbours = [] image_path = save_tile(row.file_path, out_folder, box[0], box[1], img) for neighbour in neigbours: n_path = None if neighbour: x, y, n_img = neighbour n_path = save_tile(row.file_path, out_folder, x, y, n_img) neighbours.append(n_path) z_stack_images.append({ "focus_value": row.focus_value, "image_path": image_path, "neighbours": neighbours, "original_filename": row.file_name, "scan_uuid": row.uuid, "study_id": row.study_id, }) z_stacks.append({ "best_index": None, "images" : z_stack_images, "obj_name": obj.name, "stack_id": obj.stack_id, }) return z_stacks def save_stack(stack, out_folder, in_folder): z_stacks = [] for obj in stack.objects: z_stacks.extend(save_obj_tiles(obj, out_folder, in_folder, stack.images)) return z_stacks if __name__ == "__main__": load_dotenv() print("Geting environment variables...") size = int(os.getenv('IMG_SIZE')) root_in = os.getenv('ROOT_IN') print(f'img_size: ') print(f'in_folder: {root_in}') print("Loading data from csv files...") objects = pd.read_csv("out/test_objects.csv", index_col=0) stacks = pd.read_csv("out/test_stacks.csv", index_col=0) stacks_dict = defaultdict(lambda: StackEntry()) print("Building internal datastructure...") # adding images to dict for (index, row) in stacks.iterrows(): stacks_dict[row.stack_id].add_image(row) for values in stacks_dict.values(): values.sort() # adding objects for (index, row) in objects.iterrows(): stacks_dict[row.stack_id].add_object(row) out_folder = "out" z_stacks = [] print("Generating image tiles and writing them to file...") for stack in stacks_dict.values(): z_stacks.extend(save_stack(stack,"out", root_in)) # randomize z_stacks print("Shuffling data...") random.shuffle(z_stacks) print("Writing meta-data for annotation to file...") with open(os.path.join(out_folder, "data.json"), 'w') as file: file.write(json.dumps(z_stacks))