import json import torch import pandas as pd from pathlib import Path from itertools import repeat from collections import OrderedDict def ensure_dir(dirname): dirname = Path(dirname) if not dirname.is_dir(): dirname.mkdir(parents=True, exist_ok=False) def read_json(fname): fname = Path(fname) with fname.open('rt') as handle: return json.load(handle, object_hook=OrderedDict) def write_json(content, fname): fname = Path(fname) with fname.open('wt') as handle: json.dump(content, handle, indent=4, sort_keys=False) def inf_loop(data_loader): ''' wrapper function for endless data loader. ''' for loader in repeat(data_loader): yield from loader def prepare_device(n_gpu_use): """ setup GPU device if available. get gpu device indices which are used for DataParallel """ n_gpu = torch.cuda.device_count() if n_gpu_use > 0 and n_gpu == 0: print("Warning: There\'s no GPU available on this machine," "training will be performed on CPU.") n_gpu_use = 0 if n_gpu_use > n_gpu: print(f"Warning: The number of GPU\'s configured to use is {n_gpu_use}, but only {n_gpu} are " "available on this machine.") n_gpu_use = n_gpu device = torch.device('cuda:0' if n_gpu_use > 0 else 'cpu') list_ids = list(range(n_gpu_use)) return device, list_ids class MetricTracker: def __init__(self, *keys, writer=None): self.writer = writer self._data = pd.DataFrame(index=keys, columns=['total', 'counts', 'average']) self.reset() def reset(self): for col in self._data.columns: self._data[col].values[:] = 0 def update(self, key, value, n=1): if self.writer is not None: self.writer.add_scalar(key, value) self._data.total[key] += value * n self._data.counts[key] += n self._data.average[key] = self._data.total[key] / self._data.counts[key] def avg(self, key): return self._data.average[key] def result(self): return dict(self._data.average)