# @package _global_ # specify here default training configuration defaults: - _self_ - datamodule: mnist.yaml - model: mnist.yaml - callbacks: default.yaml - logger: null # set logger here or use command line (e.g. `python train.py logger=tensorboard`) - trainer: default.yaml - log_dir: default.yaml # experiment configs allow for version control of specific configurations # e.g. best hyperparameters for each combination of model and datamodule - experiment: null # debugging config (enable through command line, e.g. `python train.py debug=default) - debug: null # config for hyperparameter optimization - hparams_search: null # optional local config for machine/user specific settings # it's optional since it doesn't need to exist and is excluded from version control - optional local: default.yaml # enable color logging - override hydra/hydra_logging: colorlog - override hydra/job_logging: colorlog # path to original working directory # hydra hijacks working directory by changing it to the new log directory # https://hydra.cc/docs/next/tutorials/basic/running_your_app/working_directory original_work_dir: ${hydra:runtime.cwd} # path to folder with data data_dir: ${original_work_dir}/data/ # pretty print config at the start of the run using Rich library print_config: True # disable python warnings if they annoy you ignore_warnings: True # set False to skip model training train: True # evaluate on test set, using best model weights achieved during training # lightning chooses best weights based on the metric specified in checkpoint callback test: True # seed for random number generators in pytorch, numpy and python.random seed: null # default name for the experiment, determines logging folder path # (you can overwrite this name in experiment configs) name: "default"