--- language: - multilingual - ar - bg - ca - cs - da - de - el - en - es - et - fa - fi - fr - gl - gu - he - hi - hr - hu - hy - id - it - ja - ka - ko - ku - lt - lv - mk - mn - mr - ms - my - nb - nl - pl - pt - ro - ru - sk - sl - sq - sr - sv - th - tr - uk - ur - vi - yo license: mit library_name: sentence-transformers tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers language_bcp47: - fr-ca - pt-br - zh-cn - zh-tw pipeline_tag: sentence-similarity inference: false --- ## 0xnu/pmmlv2-fine-tuned-yoruba Yoruba fine-tuned LLM using [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2). ### Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["Kini olu ilu England", "Kini eranko ti o gbona julọ ni agbaye?"] model = SentenceTransformer('0xnu/pmmlv2-fine-tuned-yoruba') embeddings = model.encode(sentences) print(embeddings) ``` ### License This project is licensed under the [MIT License](./LICENSE). ### Copyright (c) 2024 [Finbarrs Oketunji](https://finbarrs.eu).